
Using Multiple Kinects to Build Larger Multi-Surface
Environments

Alaa Azazi, Teddy Seyed, Fadi Botros,
Daniel Sabourin, Edwin Chan, and Frank Maurer

Agile Surface Engineering Group, University of Calgary, Canada
{alaa.azazi,teddy.seyed,fadi.botros,

daniel.sabourin,edwin.chan,frank.maurer}@ucalgary.ca

Abstract. Multi-surface environments integrate a wide variety of different de-
vices such as mobile phones, tablets, digital tabletops and large wall displays
into a single interactive environment. The interactions in these environments are
extremely diverse and should utilize the spatial layout of the room, capabilities
of the device, or both. For practical multi-surface environments, using low-cost
instrumentation is essential to reduce entry barriers. When building multi-surface
environments and interactions based on lower-end tracking systems (such as the
Microsoft Kinect) as opposed to higher-end tracking systems (such as the Vicon
Motion Tracking systems), both developer and hardware issues emerge. Issues
such as time and ease to build a multi-surface environment, limited range of low-
cost tracking systems, are reasons we created MSE-API. In this paper, we present
MSE-API, its flexibility with low-cost tracking systems, and industry-based us-
age scenarios.

Keywords: Multi-surface framework, multi-surface applications, API Design ,
kinect integration

1 Introduction

Multi-Surface Environments (MSE) incorporate many heterogeneous devices into unique
interactive spaces, where interaction is typically spread across and between the devices.
Mobile phones, tablets, digital tabletops and large wall displays each have unique char-
acteristics (i.e. size, mobility, resolution) that support different types of interactions
and usage scenarios [10]. The interactions can use the spatial layout of the environ-
ment (i.e. flicking to another device) or non-spatial (i.e. sending to another device via
a graphical user interface) which only requires interdevice communication. To design
spatially-aware multi-surface systems, the environment needs to track the location and
orientation of users and devices in a room so that proxemic interactions [7] can be
incorporated into the workflow of the multi-surface application.

From a developer perspective, building the multi-surface environments and spatially-
aware interactions faces a number of challenges. A key challenge, motivating the work
presented, is related to the cost and choice of tracking sensors. In many usage scenarios,
using lower-end tracking systems (such as the Microsoft Kinect1) is required cost-wise

1Microsoft Kinect. http://www.microsoft.com/en-us/kinectforwindows/



2 Using Multiple Kinects to Build Larger Multi-Surface Environments

in comparison to higher-end tracking systems (such as the Vicon Motion Tracking sys-
tems2) despite the tradeoff in precision and robustness. As technologies such as the
Microsoft Kinect are already utilized and deployed in a number of different environ-
ments [1], extending the capability to multi-surface environments is beneficial.

A specific problem with technologies such as the Microsoft Kinect is that they are de-
signed for use in a typical home environment, which limits its use to relatively confined
spaces [2]. Most use cases for the Microsoft Kinect assume a single device in a small
room. As a result, occlusion problems occur when multiple users enter the space and
users become untraceable in larger rooms. In this paper, we present an approach that
integrates multiple Microsoft Kinects to track users and their devices in larger rooms
while overcoming occlusion issues to a substantial degree. We present MSE-API, which
allows developers to rapidly build and explore larger multi-surface environments, ap-
plications and interactions using multiple Microsoft Kinects. In this paper, we discuss
briefly similar frameworks and their challenges and then introduce the design of MSE-
API. This is then followed by a brief overview of industry-based applications built using
MSE-API and finally the next steps for enhancing MSE-API.

2 Related Work

The research literature for multi-surface environments is extremely well ex-plored, from
both an HCI perspective and systems perspective. One of the earliest and canonical
examples of multi-surface environments is the i-Land project by Streitz et al. [3], which
connected tabletops, specialized chairs with displays and large wall displays into a novel
interaction environment. Users were able to move their personal content among the
different devices in the environment.

Being able to move content, highlights one of the primary purpose of interactions in
multi-surface environments. Interactions such as flicking [4] or picking and dropping
[5] are examples of interactions that, in a multi-surface environment, require spatial
information and device communication. For instance, if a user were to flick content to
another user, the environment must know where each user is and where their devices
are facing, as well as the system being able to communicate between the devices. As a
result, to properly integrate these types of interactions for developers in a multi-surface
environment, a tracking system needs to be used and a communication framework is
needed.

3MF is an example of a communication framework by Kaufmann et al [6], which
allows different types of devices on a network to communicate and discover each other.
For a multi-surface environment, this type of communication framework would be ideal,
however, from a developer perspective, its lack of proper web based standards (e.g.
REST) limits its ease-of-use, in addition to not supporting direct content transfer be-
tween devices.

Proximity Toolkit by Marquadt et al. [7], is one of the first examples of a toolkit
used to build applications and environments for proxemics interactions. Proxemic in-
teractions are based upon the relationships people have with devices and each other (i.e.
distance, location, orientation). Using this toolkit, developers can rapidly build unique

2Vicon. http://www.vicon.com/



Using Multiple Kinects to Build Larger Multi-Surface Environments 3

applications with extremely precise spatial tracking. A drawback however, is its use
of the expensive Vicon Motion Capture System, which requires physical markers, also
limiting its practicalness for industry-based environments. While it is capable of us-
ing a Microsoft Kinect, there is a loss in its ability to do accurate spatial tracking of
both people and their devices, as well as the size of the environment itself and the oc-
clusion problems associated with the Kinect. A solution to expanding the size of an
environment without highly accurate tracking sensors is to use multiple low-cost sensor
equipment and merge the data from each to create a better picture of the environment.
Satyavolu demonstrated that using the Kinect as a low-cost and expanded tracking sys-
tem was effective for marker-based tracking as well as solving the occlusion problems
of the Kinect [8]. Later work by Schonauer et al. [2], used multiple Microsoft Kinects
to successfully demonstrate tracking a single user in a wider area.

As shown, there is a significant amount of work in the multi-surface space, however,
much of it is either independent or not integrated, which limits their ease-of-use for
developers, or is simply not cost-effective or feasible for industry-based environments.
In the next section, we describe how we introduce and describe MSE-API, designed to
address some of these issues.

3 MSE-API

MSE-API is designed to integrate much of the prior and sometimes independent work
in the literature – proxemics and spatial interactions, multiple sensor approaches – into
a useable API for developers to build multi-surface environments and applications with-
out worrying about low-level details such as spatial tracking. Specifically, MSE-API is
useful for use cases involving spatial queries and device-to-device communication. In
this section, we describe the main components of MSE-API, as well as multi-Kinect
integration and calibrating the room environment.

Fig. 1. MSE Architecture. Example environment with multiple MSE Kinect clients running, a
tabletop running a client library and the MSE Visualizer and Locator service running on a wall
display



4 Using Multiple Kinects to Build Larger Multi-Surface Environments

3.1 API Components

The MSE-API consists of four main components: the MSE Locator service, MSE Kinect
client, the MSE Visualizer, and MSE client libraries. Each of these components is ex-
plained in more detail below and shown in Figure 1.

MSE Locator. The MSE Locator service is the central component of the MSE-API.
It maintains basic information about tracked devices and entities in the room space in-
cluding position and orientation, which can be queried for by devices using the client
libraries. The locator service is designed to obtain raw positional data from the dis-
tributed sensor clients over the local area network, and transform that data from each
device coordinate space into the locators coordinate space.

MSE Kinect Client. The MSE Kinect Client uses a single Microsoft Kinect sensor
to collect positional data (skeletal) of users in the room. Collected data is sent over
the network using TCP connections at a rate of 30 skeleton frames per second to the
MSE locator service for processing. The MSE Kinect Client also allows the API to
incorporate an arbitrary number of Kinect sensors. The MSE Locator service collects
tracking data from the distributed sensors over the local area network, awaiting input
from the connected MSE Kinect clients. It then utilizes the received data to generate
an interpretation of the entities in the room space. Following this structure allows for
an easily scalable design that uses single or multiple Kinect sensors, which can be run
on the same physical computer or distributed over the network. To expand the size of
the observed area, multiple Kinect clients are set up covering overlapping areas of the
same room. A more elaborate configuration could use multiple Kinect clients covering
a larger area of the same room or distributed over multiple rooms. This is discussed
in more detail in a later section. As a single Kinect sensor accurately tracks positional
data from a range of 1.2 to 3.5 meters [8], incorporating multiple sensors is essential to
tracking larger areas and improving the accuracy of tracking in these larger areas. In a
later section, we discuss the integration of the data collected by multiple Kinect sensors,
and how to calibrate MSE-API to match an arbitrary room space.

MSE Visualizer. The MSE Visualizer, shown in Figure 2, assists developers to picture
and understand the MSE Locators interpretation of the position and orientation of de-
vices and users being tracked in the environment. It presents a 2D visualization of the
environment, which is updated in real-time and shows:

– The approximate area of the room space as a 2D grid (Fig 2a)
– Location and orientation of the Kinect clients currently feeding the locator service

(Fig 2b)
– Devices that are currently visible within the room space (Fig 2c)
– Location and orientation of users and devices in the room space (Fig 2d & 2e)

Client Libraries. MSE-API provides client libraries in Objective-C and C# to aid de-
velopers in integrating devices (running iOS or .NET) into a multi-surface environment



Using Multiple Kinects to Build Larger Multi-Surface Environments 5

Fig. 2. MSE Visualizer. (A) Room Space approximation; (B) Kinect clients being used for the
locator service; (C) Available device visible in room; (D) Position and orientation of a paired
user and device, represented by the field of view lines and green color; (E) Unpaired but tracked
user

or application. The client libraries allows device information such as orientation (from
the device itself, assuming gyroscopic information is available) to be provided directly
to the MSE Locator service without any extra work for the developer. Also provided is
a simple interface for developers to perform spatial queries (e.g. what devices an iPad
is facing) in order to obtain location and orientation information of other devices in the
system. A HTTP based networking layer is used to simplify the process of sending and
receiving specific data types (binary data, images, dictionaries). This allows novice de-
velopers to send and receive data throughout the system with zero understanding of the
specifics of message serialization, encoding or deserialization.

3.2 Implementation.

MSE-API itself is implemented in C# (the MSE Locator service, MSE Kinect client and
.NET client library) as well as Objective-C (iOS client library) and uses the Microsoft
Kinect SDK to retrieve data from sensors. The Microsoft Kinect SDK also provides
functionalities such as gesture recognition, which is used by the API as the mechanism
to establish the pairing relationship between devices and users.

Communication: Upon starting an MSE-API based application or environment, the
MSE locator service advertises its existence over the local area network using multicast.
MSE Kinect clients then listen for the MSE Locator service and establish a permanent



6 Using Multiple Kinects to Build Larger Multi-Surface Environments

TCP-connection with it, which is used for all future communication. The configura-
tion of the connections of the MSE Locator and the MSE Kinect clients is established
through automatic service discovery, which simplifies setup and provides plug-and-play
functionality. Alternatively, for device-to-device communication, IntAirAct3, a cross-
platform networking and device discovery is used, and follows the HTTP based routing
and protocols, as mentioned previously.

Integrating Multiple Kinects: Before the MSE Locator service processes any re-
ceived skeletal data from a Kinect sensor, the sensor needs to be positioned physically
in the room environment. When a new MSE Kinect client is detected, the MSE Locator
service adds the new client to the list of connected MSE Kinect clients, and signals the
client to stop transmitting skeletal frames (for performance purposes as skeletal data
can be quite large). The Kinect client is presented as an icon and appears in Available
Kinects in the MSE Visualizer (see Figure 2). Dragging the icon and positioning it in
on the room space in the MSE Visualizer maps the approximate physical environment
for the MSE Locator service. Once a MSE Kinect client is positioned, the MSE Locator
signals the MSE Kinect client to start transmitting skeletal data.

Once MSE Locator receives skeletal data from a positioned MSE Kinect client, it at-
tempts to translate and merge the data into the existing interpretation of the room space.
To use the data received from the MSE Kinect client, the coordinates corresponding to
each of the skeletons received are transformed from the Kinect clients coordinate space
into the MSE Locators room space. The MSE Locator maintains a list of sensors track-
ing each user alongside the skeleton identifier each sensor is assigning for that user.
After each skeleton has been transformed, the locator compares the received data with
the list of users currently being tracked by the system. The locator ensures that a per-
son that is being tracked by multiple sensors is presented only once by comparing its
position with the relative position of each of the tracked users.

3.3 Calibrating the Environment

Before calibrating the Kinect sensors using MSE Visualizer, a user should ensure that
the fields of view of a set of Kinect sensors are overlapping. This guarantees that no gaps
are present within the tracked area of the room space. To calibrate, a user will need to
stand in the mutual area observed by all the sensors, and click the Calibrate button on
the MSE Visualizer, which will translate the locations of the sensors accordingly, and
thus all sensors will return the same position for the tracked user. This results in the
user being constantly tracked by multiple sensors and, therefore, solving the occlusion
problem. The process (Figure 3) can be repeated on a different set of sensors in larger
installations that cover larger or multiple rooms.

3IntAirAct. http://arlol.github.io/intairact.html



Using Multiple Kinects to Build Larger Multi-Surface Environments 7

Fig. 3. Calibration. (1) Manually align the Kinects to overlap (2) A user stands in the overlapping
area (3) Calibrate button is clicked on MSE Visualizer to calibrate the Kinects

4 Applications of MSE-API

4.1 ePlan Multi-Surface

C4i Consultants is a company based in Calgary, Alberta, Canada who specializes in
training software for emergency response and military operations. Currently, they uti-
lize ePlan, a software designed to simulate large scale emergencies, to train city op-
erators on how to respond with different types and scales of emergencies. Given the
collaborative nature of emergency response planning [9] and the number of individuals
in the process, this was an ideal candidate for building a multi-surface environment. In
collaboration with C4i Consultants, a multi-surface environment was created utilizing
ePlan, that allowed larger groups of different stakeholders (e.g. fire, police, hazmat) to
collaborate and communicate with a large wall display, tablets and a digital tabletop.
Spatial interactions such as flick and pour are used to transfer vital emergency informa-
tion amongst the different stakeholders and their devices.

4.2 SkyHunter

SkyHunter Exploration Ltd, located in Calgary, Alberta, Canada is a company who spe-
cializes in oil and gas exploration. With proprietary technology, they collect a variety
of geo-spatial data, much of which is multi-disciplinary, and ultimately increases the
chances of discovering oil and gas significantly. Prior to building a multi-surface ap-
plication, much of the collaboration with the stakeholders in the exploration process
(i.e. geophysicists, geologists) was paper-based and ineffective due to large volumes
of geo-spatial data. Upon building a multi-surface environment, positive feedback was
immediately received in collaboration, coordination and geo-spatial data integration.

5 Future Work & Conclusion

One of the first directions to further this research is a larger formal study of MSE-
API. Several pilot usability evaluations have been performed, with relatively positive
feedback, however, a formal one has not been conducted as of yet. Another unique
direction for this research is to allow for MSE-API to be heterogeneous in the types



8 Using Multiple Kinects to Build Larger Multi-Surface Environments

of low-cost tracking sensors to be utilized. This means being able to use newer sensor
technologies for more fine grained tracking in addition to the larger tracking space
provided by multiple Kinect sensors.

In this paper, we present MSE-API, which provides a successful low-cost multi-
tracking solution for building larger multi-surface environments and applications. We
describe example applications built for industry-partners using the API and propose
additional work for the future, including its evaluation.

References

1. Panger, G..: Kinect in the kitchen: testing depth camera interactions in practical home envi-
ronments. In CHI ’12 Extended Abstracts on Human Factors in Computing Systems (CHI EA
’12). ACM, New York, NY, USA (2012)

2. Schonauer, K., Kaufmann, H.: Grid Wide Area Motion Tracking Using Consumer Hardware.
In Proceedings of Workshop on Whole Body Interaction in Games and Entertainment. Lisbon,
Porgual (2011)

3. Streitz, N., GeiBler, J., Holmer, T., Shin’ichi, K., Mller-Tomfelde, C., Reischl, W., Rexroth,
P., Seitz, P., Steinmetz, R.: i-LAND: an interactive landscape for creativity and innovation. In
Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI’99).
Pittsburgh, USA (1999)

4. Bragdon, A., DeLine, R., Hinckley, K., Morris, M.R.: Code space: touch + air gesture hy-
brid interactions for supporting developer meetings. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces(ITS’11). Kobe, Japan (2011)

5. Rekimoto, J.: Pick-and-drop: a direct manipulation technique for multiple computer environ-
ments. In Proceedings of the 10th annual ACM symposium on User interface software and
technology (UIST’97). Banff, Canada (1997)

6. Kaufmann, M., Hitz, M.: 3MF - A Service-Oriented Mobile Multimodal Interaction Frame-
work. In Proceedings of the workshop on infrastructure and design challenges of coupled
display visual interfaces (PPD’12). Capri, Italy (2012)

7. Marquardt, N., Diaz-Marino, R., Boring, S., Greenberg, S.: The proximity toolkit: prototyping
proxemic interactions in ubiquitous computing ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software and technology (UIST’11). Santa Barbara, USA
(2011)

8. Satyavolu, S., Bruder, G., Willemsen, P., Steinicke, F.: Analysis of IR-based virtual reality
tracking using multiple Kinects. In Proceedings of the 2012 IEEE Virtual Reality (VR’12).
Orange County, USA (2012)

9. Qin, Y., Liu, J., Wu, C., Yuanchun, S.: uEmergency: a collaborative system for emergency
management on very large tabletop . In Proceedings of the 2012 ACM International Confer-
ence on Interactive Tabletops and Surfaces(ITS’12). Boston, USA (2012)

10. Dzmitry Aliakseyeu, Andrs Lucero, Jean-Bernard Martens: Users’ quest for an optimized
representation of a multi-device space. Personal and Ubiquitous Computing 13(8): 599-607
(2009)


